Skip to content

CP2K解析Li10GeP2S12固态电解质中锂离子迁移机制

CP2K软件中的从头算分子动力学(AIMD)方法,可实时计算原子受力,直接模拟体系动态演化过程。
相比传统静态计算(能垒搜索+电子结构分析),AIMD模拟可实时捕获化学键断裂/形成过程,揭示离子迁移的协同机制与瞬态中间态结构,为材料动力学行为提供直接证据。且无需预设势函数参数,避免ReaxFF等反应力场的经验性约束,显著提升复杂体系(如界面反应、相变过程)的模拟普适性。
本次实操,基于超算互联网平台,通过CP2K软件对固态电解质Li10GeP2S12 (LGPS) 的锂离子迁移行为进行AIMD模拟,计算锂离子扩散系数及迁移势垒。

一、结构优化

超算互联网提供多种编译好的CP2K,支持开箱即用。本次实操,我们使用cp2k-v2025.1-oneapi2024版本,如下图所示: 1.png 结构优化是DFT计算必不可少的第一步,稳定的构型对后续的模拟至关重要。首先将结构文件POSCAR.cif上传至文件夹opt中,用超算互联网提供的Multiwfn软件准备cp2k.inp文件对其进行结构优化。 2.png3.png 按照提示输入目录:/public/home/lml1234/LGPS/opt/POSCAR.cif。调用Multiwfn程序。 4.png 依次输入:cp2k-enter-1-2-0-q,就会在当前文件夹生成结构优化的输入文件POSCAR.inp
@SET DATAPATH /public/home/lml1234/apprepo/cp2k/v2025.1-oneapi2024/app/data

shell
&GLOBAL
  PROJECT POSCAR
  PRINT_LEVEL LOW
  RUN_TYPE ENERGY
&END GLOBAL

&FORCE_EVAL
  METHOD Quickstep
  &SUBSYS
    &CELL
      A     8.78765000     0.00000000     0.00000000
      B     0.00000000     8.78765000     0.00000000
      C     0.00000000     0.00000000    12.65755000
      PERIODIC XYZ #Direction(s) of applied PBC (geometry aspect)
    &END CELL
    &COORD
      Li          2.04007931    2.38843933    3.75933032
      Li          6.74750039    6.39893825    3.75962145
      Li          6.39892068    2.04021113   10.08837113
      Li          2.38842176    6.74764099   10.08813064
      Li          2.04021113    6.39892068    3.75959613
      Li          6.74764099    2.38842176    3.75935564
      Li          6.39893825    6.74750039   10.08839645
      Li          2.38843933    2.04007052   10.08810532
      Li          2.25261741    2.43548841    0.50509953
      Li          6.53505016    6.35213523    0.50518814
      Li          6.35211765    2.25263499    6.83392516
      Li          2.43547083    6.53506774    6.83392516
      Li          2.25263499    6.35211765    0.50515016
      Li          6.53506774    2.43547083    0.50515016
      Li          6.35213523    6.53505016    6.83396314
      Li          2.43548841    2.25261741    6.83387453
      Li          0.00021969    8.78763242    5.53522256
      Li          8.78763242    0.00021969   11.86399756
      Li          4.39383379    4.39379864    0.61854915
      Li          4.39379864    4.39383379    6.94732415
      Ge          4.39384258    4.39381621    3.81556782
      Ge          4.39381621    4.39384258   10.14434282
      P           8.78764121    8.78756212    2.31904037
      P           8.78756212    8.78764121    8.64781537
      P           0.00005273    4.39378985    6.34977388
      P           4.39378985    0.00005273    0.02099888
      S           8.78757970    1.68675427    9.80576601
      S           8.78763242    7.10085179    9.80579133
      S           7.10086058    8.78763242    3.47701633
      S           1.68675427    8.78757970    3.47699101
      S           0.00001758    1.71225603    1.15197628
      S           0.00001758    7.07565760    1.15130543
      S           7.07565760    0.00001758    7.48008043
      S           1.71225603    0.00001758    7.48075128
      S           0.00007909    2.68570796    5.18939298
      S           0.00007909    6.10190689    5.18936766
      S           6.10190689    0.00007909   11.51814266
      S           2.68570796    0.00007909   11.51816798
      S           1.66801900    4.39382500    7.53531798
      S           7.11964858    4.39382500    7.53515343
      S           4.39382500    1.66801900    1.20654298
      S           4.39382500    7.11964858    1.20637843
      S           2.54387528    4.39383379   11.44195687
      S           6.24377472    4.39383379   11.44195687
      S           4.39383379    2.54387528    5.11318187
      S           4.39383379    6.24377472    5.11318187
      S           2.56304994    4.39381621    2.51337173
      S           6.22463521    4.39381621    2.51339705
      S           4.39381621    2.56304994    8.84214673
      S           4.39381621    6.22463521    8.84217205
    &END COORD
    &KIND Li
      ELEMENT Li
      BASIS_SET DZVP-MOLOPT-SR-GTH-q3
      POTENTIAL GTH-PBE
    &END KIND
    &KIND Ge
      ELEMENT Ge
      BASIS_SET DZVP-MOLOPT-SR-GTH-q4
      POTENTIAL GTH-PBE
    &END KIND
    &KIND P
      ELEMENT P
      BASIS_SET DZVP-MOLOPT-SR-GTH-q5
      POTENTIAL GTH-PBE
    &END KIND
    &KIND S
      ELEMENT S
      BASIS_SET DZVP-MOLOPT-SR-GTH-q6
      POTENTIAL GTH-PBE
    &END KIND
  &END SUBSYS

  &DFT
    BASIS_SET_FILE_NAME  ${DATAPATH}/BASIS_MOLOPT
    POTENTIAL_FILE_NAME  ${DATAPATH}/POTENTIAL
#   WFN_RESTART_FILE_NAME POSCAR-RESTART.wfn
    CHARGE    0 #Net charge
    MULTIPLICITY    1 #Spin multiplicity
    &QS
      EPS_DEFAULT 1.0E-11 #Set all EPS_xxx to values such that the energy will be correct up to this value
    &END QS
    &POISSON
      PERIODIC XYZ #Direction(s) of PBC for calculating electrostatics
      PSOLVER PERIODIC #The way to solve Poisson equation
    &END POISSON
    &XC
      &XC_FUNCTIONAL PBE
      &END XC_FUNCTIONAL
    &END XC
    &MGRID
      CUTOFF  350
      REL_CUTOFF  50
    &END MGRID
    &SCF
      MAX_SCF 128
      EPS_SCF 5.0E-06 #Convergence threshold of density matrix of inner SCF
      &DIAGONALIZATION
        ALGORITHM STANDARD #Algorithm for diagonalization
      &END DIAGONALIZATION
      &MIXING #How to mix old and new density matrices
        METHOD BROYDEN_MIXING #PULAY_MIXING is also a good alternative
        ALPHA 0.4 #Default. Mixing 40% of new density matrix with the old one
        NBROYDEN 8 #Default is 4. Number of previous steps stored for the actual mixing scheme
      &END MIXING
      &PRINT
        &RESTART #Note: Use "&RESTART OFF" can prevent generating .wfn file
          BACKUP_COPIES 0 #Maximum number of backup copies of wfn file. 0 means never
        &END RESTART
      &END PRINT
    &END SCF
  &END DFT
&END FORCE_EVAL

小技巧:常规操作中,我们需要将基组文件BASIS_MOLOPT和赝势文件POTENTIALS拷贝到我们计算文件夹中,在本例中,利用linux中的set命令使用绝对路径指定将其写入输入文件中,计算的时候直接引用即可。
添加一行文件所在路径:@SET DATAPATH /public/home/lml1234/apprepo/cp2k/v2025.1-oneapi2024/app/data 5.png

二、AIMD模拟

(1) 输入文件:采用结构优化得到的稳定构型进行AIMD模拟,这里仍旧命名为POSCAR.cif,准备输入文件cp2k.inp文件。
@SET DATAPATH /public/home/lml1234/apprepo/cp2k/v2025.1-oneapi2024/app/data

shell
&GLOBAL
  PROJECT cp2k
  RUN_TYPE MD 
  PRINT_LEVEL LOW 
&END GLOBAL

&FORCE_EVAL
  METHOD Quickstep
  &DFT
    BASIS_SET_FILE_NAME ${DATAPATH}/BASIS_MOLOPT
    POTENTIAL_FILE_NAME ${DATAPATH}/GTH_POTENTIALS
    WFN_RESTART_FILE_NAME ./cp2k-RESTART.wfn
    UKS  T  #LSD
    &MGRID
      NGRIDS 4
      CUTOFF 400
      REL_CUTOFF 60 
    &END MGRID
    &QS
      WF_INTERPOLATION ASPC
      EXTRAPOLATION_ORDER 3
    &END QS
    &XC
      &XC_FUNCTIONAL PBE
      &END XC_FUNCTIONAL
    &END XC
     &SCF
       SCF_GUESS   RESTART
       MAX_SCF     100
       EPS_SCF     1.0E-06
       &OT  T
         MINIMIZER  CG 
         LINESEARCH  2PNT
         PRECONDITIONER  FULL_ALL
       &END OT
       &OUTER_SCF  T
         EPS_SCF     1.0E-05
         MAX_SCF     100
       &END OUTER_SCF
   &END SCF
  &END DFT
  &SUBSYS
    &CELL
     ABC 8.78765 8.78765 12.65755 
     ALPHA_BETA_GAMMA  90 90 90
    &END CELL
    &TOPOLOGY
       COORD_FILE_NAME POSCAR.cif
       COORD_FILE_FORMAT cif 
    &END TOPOLOGY
    &KIND Ge
      BASIS_SET DZVP-MOLOPT-SR-GTH
      POTENTIAL GTH-PBE-q4
    &END KIND
    &KIND P
      BASIS_SET DZVP-MOLOPT-SR-GTH
      POTENTIAL GTH-PBE-q5
    &END KIND
    &KIND S 
      BASIS_SET DZVP-MOLOPT-SR-GTH
      POTENTIAL GTH-PBE-q6
    &END KIND
    &KIND Li
      BASIS_SET DZVP-MOLOPT-SR-GTH
      POTENTIAL GTH-PBE-q3
    &END KIND
   &END SUBSYS
&END FORCE_EVAL
 &MOTION
    &MD
    ENSEMBLE NVT
    STEPS 20000
    TIMESTEP 1 
    TEMPERATURE 600.0
    &THERMOSTAT
      TYPE NOSE
      &NOSE
        LENGTH 3
        YOSHIDA 3
        MTS 2
        TIMECON [wavenumber_t] 1000
      &END NOSE
    &END THERMOSTAT
  &END MD
  &PRINT
   &TRAJECTORY
     &EACH
       MD 1
     &END EACH
   &END TRAJECTORY
   &VELOCITIES 
     &EACH
       MD 1
     &END EACH
   &END VELOCITIES
   &RESTART_HISTORY
     &EACH
       MD 500
     &END EACH
   &END RESTART_HISTORY
  &END PRINT
&END MOTION

关于输入文件cp2k.inp的几点说明:
GLOBAL部分: RUN_TYPE为MD,同时设置PRINT_LEVEL为LOW减少输出从而减轻服务器的负担。 6.png MOTION部分:设置系综、温度、步长(默认单位fs)、步数,选择NVT系综,并设置Nose-Hoover恒温器来维持恒定的温度。因为AIMD模拟可随时手动停止,所以步长可以设置长一点,通过观察输出的轨迹满足期待的效果时即可停止。 7.png (2)结果分析: -pos-1.xyz文件中记录了原子的位置信息,这里利用超算互联网中提供的vmd软件对锂离子迁移路径进行可视化处理,将输出文件导入到vmd软件。 8.png 进行如下图所示的操作后即可得到锂离子的轨迹迁移路径。 9.png10.png 通过对模拟过程中Li的迁移轨迹可视化处理我们能够得出结论,Li离子沿C轴方向进行了迁移。接下来进行数据分析。
均方位移(Mean square displacement, MSD )是相对于参考位置的粒子位置随时间变化的度量。VMD可以计算方均根位移(Root Mean square displacement),对其进行平方即可得到MSD。 11.png12.png 扩散常数(diffusion coefficient)是MD模拟描述离子/分子迁移性质的重要参数,通过AIMD求算扩散常数常用的是Einstein公式: 13.png 通过该公式求得在600K时,Li离子的扩散常数为7.41×10^-6。
扩散系数和能垒关系满足,阿伦尼乌斯公式: 14.png 最终求得Li离子的迁移能垒为Ea=0.214 eV。